Защита конструкций и промышленная очистка
Система менеджмента качества ISO 9001:2015
Работаем во всех регионах Российской Федерации
Получить консультацию Заказать звонок

Электродуговая металлизация

Под металлизацией понимается метод модификации свойств поверхности изделий посредством нанесения на них функционального металлического покрытия. При этом обработанной поверхности придаются иные физические, механические и химические свойства. Покрытия наносятся на поверхности, предварительно подвергнутые механической абразивной обработке, методом электродуговой металлизации (ЭДМ). В качестве исходного присадочного материала используются металлические проволоки, в том числе и порошковые, которые расплавляются электродугой, с последующим распылением по поверхности обрабатываемого изделия струей газа (аргон, гелий, азот) или сжатого воздуха и созданием на нем металлизированного покрытия многослойной структуры. При этом наблюдается относительно невысокий (не более 120°С) нагрев поверхности обрабатываемого изделия, что полностью исключает структурные изменения основного металла и его деформацию.

Сцепление частиц с обрабатываемым изделием и между собой происходит не только путем простого механического сцепления с шероховатой поверхностью (силы адгезии), но и за счет диффузии металлов (силы молекулярного притяжения). Поэтому металлическое напыление прочно удерживается на изделиях и не отслаивается даже при их механической деформации.

Область применения

Электродуговая металлизация вместе с последующим нанесением на металлоконструкции лакокрасочных материалов относится к гибридным покрытиям, срок службы которых благодаря синергетическому эффекту существенно превосходит суммарный срок эксплуатации каждого из этих слоев.

Данные покрытия рассчитаны на длительную антикоррозионную защиту металлоконструкций, которые в процессе эксплуатации подвергаются воздействию агрессивных факторов внешней среды как снаружи, так и внутри сооружений, а также в жидкостях.

Покрытия, создаваемые методом электродуговой металлизации, нашли применение в системах защиты от коррозии:

  • металлоконструкций;
  • железобетонных опор (мостов, эстакад, путепроводов);
  • трубопроводных магистралей, топливо- и нефтехранилищ;
  • технологического оборудования нефтедобывающих и нефтехимических производств, тепловых сетей.

Преимущества и недостатки

В отличие от других методов антикоррозийной защиты электродуговая металлизация обладает целым рядом положительных характеристик:

  • детали и конструкции, подвергнутые металлизации, отличаются большим сроком службы (до 30 лет);
  • процесс термического напыления происходит при относительно малом тепловом воздействии на основу (температура нагрева 70—100°С), что исключает структурные изменения и деформацию основного металла;
  • нанесенное напыление имеет высокую антикоррозийную стойкость и износостойкость;
  • технологический процесс ЭДМ отличается высокой производительностью (до 100 кг/час напыляемого металла) и экономической эффективностью (низкие энерго- и другие производственные затраты), не критичен к размерам обрабытываемых конструкций, месту их расположения и погодным условиям;
  • металлическое напыление может состоять из различных металлов и сплавов, и достигать значительной толщины (до 15 мм), обладает высокой адгезией (с течением времени только возрастает), отличается высокой пластичностью, не отслаивается и не разрушается как при воздействии довольно низких температур (до —60°C), так в условиях механической деформации (изгиба);
  • антикоррозийные покрытия, созданные с помощью ЭДМ, обладают протекторным свойством самовосстановления, которое состоит в закупоривании мест механического повреждения защитного слоя окислами металла покрытия;
  • оборудование ЭДМ отличается высокой надежностью, легкостью и простотой в обслуживании;
  • процесс ЭДМ обладает высоким потенциалом автоматизации, в том числе путем создания автоматических линий.

Основными недостатками электродуговой металлизации являются:

  • ограниченный ассортимент присадочных материалов (связано с требованиями по их электропроводности и использованием в виде проволочных электродов);
  • присутствие в антикоррозийном покрытии значительной доли оксидов, что сказывается на его ударостойкости (связано с перегревом и окислением напыляемого материала при малой скорости подачи проволочных эдектродов);
  • имеются случаи недостаточной прочности сцепления напыленного металла с основой (15–45 МПа);
  • наличие высокой пористости антикоррозийного напыления ограничивает применение металлизации в агрессивных средах без применения дополнительных методов защиты.

Этапы работ

1 этап. Подготовка поверхности.

В состав этапа подготовки поверхности входят следующие операции:

  • обезжиривание поверхности металла с помощью углеводородных растворителей в случае присутствия масляноо-жировых включений.
  • обмыв участков старого лакокрасочного покрытия металлоконструкции с целью удаления солей, атмосферных загрязнений, закоксованностей;
  • абразивоструйная, гидроабразивная или гидродинамическая очистка поверхности металла с целью удаления старого лакокрасочного покрытия, ржавчины, окалины и придания шероховатости;
  • сушка поверхности ( при использовании технологий гидроабразивной или гидродинамической очистки)
  • ручная очистка и закругление острых углов, кромок, удаление заусенцев и варочных брызг.
  • обдувка сжатым воздухом и обеспыливание поверхности металла.

Контроль качества подготовленной поверхности осуществляется на предмет соответствия следующим критериям:

  • абразивоструйная очистка должна быть осуществлена до степени, определенной регламентом (ППР), как правило, это степень SA 2- 2,5 — 3 по ISO 8501 и проверена визуально путем сравнения с эталоном;
  • ручная очистка должна быть осуществлена до степени St 2- 2,5- 3 по ISO 8501 и проверена визуально путем сравнения эталоном;
  • шероховатость Rz мкм (в зависимости от условий ППР) — проверяется с помощью компаратора или профилометра по ISO 8503-1
  • степень обеспыливания по ISO 8502-3 — проверяется по количеству и размеру частиц пыли;
  • степень обезжиривания проверяется люминесцентным способом по ГОСТ 12.2.052-81.

Контроль качества металлизационных покрытий

В процессе производства металлизационные покрытия оцениваются как по качеству поверхности, так и по прочности сцепления частиц наплавляемого металла с поверхностью изделий. Подобный контроль должен состоять из оценки внешнего вида, определения толщины и проверки прочности сцепления с основанием (адгезии). Наплавление должно иметь равномерное мелкозернистое строение и достаточно высокую чистоту поверхности (3-5 класс). При этом абсолютно недопустимым является наличие пропусков, вздутий и металлических брызг. Возможны только малозаметные различия в цветовых оттенках поверхностного металлизированного слоя.

К металлизированным покрытиям предъявляется целый ряд требований, среди них:

  • прочность сцепления с основанием;
  • мелкозернистая структура, отличающаяся наилучшими механическими свойствами;
  • минимум пористости;
  • равномерность толщины покрытия.

В отдельных случаях могут выставляться дополнительные требования, связанные с высокой твердостью, износоустойчивостью и др.

Осмотр внешнего вида

Визуальный осмотр металлизационных покрытий проводится невооруженным глазом. Конечный результат осмотра должен соответствовать требованиям технических условий на определенный вид покрытия.

Оценку качества покрытия наиболее важных изделий производят по эталонам. Покрытия никелированных деталей должны быть светлыми, блестящими и ровными. На поверхности не должно быть точечных пятен, черных полос, пузырей, трещин, отслаиваний и шероховатости. После полирования декоративные многослойные покрытия должны обладать равномерным блеском и высокой плотностью. Наличие механических дефектов в виде царапин, рисок и оголенных участков не допускается.

2 этап. Нанесение металлизационных покрытий.

Качество напыления и эффективность данного процесса в значительной степени зависят от выбранного режима металлизации, технологическими параметрами которого являются:

  • рабочее напряжение дуги;
  • давление воздуха;
  • расстояние между соплом аппарата и металлизированной поверхностью;
  • скорость перемещения металлизатора относительно изделия.или конструкции.

Напряжение дуги должно соответствовать типу используемых проволочных электродов. Сжатый воздух при ЭДМ необходимо подавать под давлением около 0,6–0,7 Мпа. Сопло металлизатора нужно располагать в 8–12 см от обрабатываемой поверхности. Скорость перемещения распылительного устройства относительно металлизируемой поверхности следует выбирать из такого расчета, чтобы за один проход толщина напыляемого слоя не превышала 0,10–0,15 мм. Низкая скорость перемещения распылителя приводит к сильному нагреву наносимого покрытия, что отрицательно влияет на его твердость и износостойкость. При ЭДМ общий нагрев обрабатываемой поверхности не должен подниматься выше 60°С. В целях исключения перегрева при нанесении утолщенных покрытий используется обдув обрабатываемых поверхностей сжатым воздухом (0,05-0,07 МПа). При этом его поток направляется на обрабатываемую поверхность на некотором расстоянии от пучка микрочастиц расплавленного металла. При ЭДМ плоских деталей и конструкций рекомендуется наносить напыление полосами, при этом соседние полосы должны перекрываться на треть их ширины.

Следует отметить, что в напыленном слое может возникать ряд дефектов. Анализ дефектов, характерных для традиционных методов наплавления, показывает, что одна из основных причин образования пор, раковин и несплавлений — это отсутствие внешнего механического воздействия при формировании и кристализации металлизированного покрытия. Образование бугристостей обусловлено слишком большой скоростью подачи проволочных электродов, недостаточным напряжением электродуги или недостаточным давлением воздушного потока. Причины пережога напыленного слоя связаны со слишком большим напряжением и силой тока, недостаточной скоростью перемещения электродугового металлизатора, большой толщиной напыляемого слоя, пониженным давлением воздуха.

3 этап. Последующая обработка поверхности.

Выбор присадочного материала для напыления определяется условиями эксплуатации и основными изнашивающими процессами, протекающими на поверхности. В качестве металлической присадки используется непрерывная проволока как сплошного сечения, так и «с сердечником», состоящим из различных порошковых материалов (металлических и минеральных). Диаметр проволочных электродов варьируется в пределах 1,0–2,5 мм. Механизмы подачи проволоки, используемые в металлизаторах, работают со скоростями от 220 до 850 м/час.

Проволочные электроды со сплошным сечением применяются преимущественно для формирования защитных покрытий поверхностей, предназначенных под неподвижные посадки (используются малоуглеродистые стали Св-08, Св-10ГА) и подвижные соединения (используются высокоуглеродистые стали Нп-50, Нп-85 и легированные стали Нп-30Х13, Нп-40Х13, Нп-60Х3В10Ф). Порошковые электроды применяются для формирования покрытий высокой твердости.

Антикоррозийные покрытия создаются из высоколегированной стальной проволоки (Св-08Х18Н8Г2Б, Св-07Х18Н9ТЮ, Св-06Х19Н9Т, Св-07Х19Н10Б, Св-08Х19Н10Г2Б, Св-06Х19Н10М3Т), а также проволочных электродов из цветных металлов (никель, цинк, медь и др.). Самыми распространенными антикоррозийными металлами цветной группы, применяемыми при ЭДМ стальных изделий и конструкций, являются алюминий, цинк и их сплавы.

Алюминий является химически активным металлом, однако при наличии окислителей образует защитную пленку и резко понижает свою активность. Противокоррозионная стойкость алюминия определяется условиями, в которых протекает коррозия. Серьезным стимулятором коррозии алюминия является сильно загрязненная атмосфера. По сравнению с чистым воздухом, в ней данный процесс происходит в несколько раз быстрее. Высокую стойкость алюминий показывает как в мягкой, так и в горячей воде.

Цинковая металлизация коррозионно-стойка к морской воде и к условиям морской атмосферы. Индустриальная атмосфера промышленных городов, содержащая окислы серы, хлора и пары соляной кислоты, значительно повышает скорость коррозии цинка, образуя с ним гигроскопические соединения.

Области применения антикоррозионной защиты

  • Нефтегазовый комплекс
  • Транспортное строительство
  • Энергетика
  • Гидротехническое строительство
  • Судостроение и судоремонт
  • Промышленность
  • Гражданское строительство
  • Объекты железнодорожного транспорта

Основные критерии правильного выбора защитного покрытия

1. Тип защищаемой поверхности

2. Подготовка поверхности:

  • Абразивоструйная
  • Дробеструйная
  • Ручным либо механическим инструментом

3. Категория коррозионной активности окружающей среды:

СТАНДАРТ ISO 12944
Атмосфера:
  • C1 – очень низкая;
  • C2 – низкая;
  • C3 – средняя;
  • C4 – высокая;
  • C5-I – очень высокая (промышленная);
  • C5-M – очень высокая (морская).
Вода и почва:
  • Im1 – пресная вода;
  • Im2 – морская вода;
  • Im3 – почва.
СНИП 2.03.11-85
  • неагрессивная;
  • слабоагрессивная;
  • среднеагрессивная;
  • сильноагрессивная;

4. Необходимый срок службы покрытия:

  • Низкий – от 2 до 5 лет;
  • Средний – от 5 до 15 лет;
  • Высокий – более 15 лет.

5. Условия нанесения антикоррозионного покрытия:

  • Зимний период;
  • Летний период;
  • Заводские;
  • Строительная площадка.

Получить бесплатную консультацию

Если у вас остались вопросы по выполняемым нами работам, а также по требованиям для проведения работ по антикоррозионной защите поверхности вашего объекта, отправьте нам заявку, наши инженеры свяжутся и проконсультируют по всем вопросам.

Заказать звонок

Галерея работ

Преимущества работы с нашей компанией

  • Собственный завод
    Компания имеет дробеструйный цех с дробеструйной камерой и два малярных цеха общей площадью 2000 м2, на котором осуществляется подготовка и нанесение любых типов покрытий.
  • Огромный опыт выполнения работ на технически сложных и опасных объектах
    За время работы компания реализовала большое количество крупных и средних объектов высокой степени сложности в различных отраслях промышленности (см. Референц-лист).
  • Проектирование под бюджет заказчика
    Компания выполняет проектировочные работы по всем направлениям, осуществляет разработку технологий работ и технологических регламентов обеспечивающих комплексные решения как по усилению строительных конструкций, так и их защите.
  • Большой парк строительной техники и оборудования
    Сварочное оборудование для полуавтоматической и ручной сварки, штукатурные станции, аппараты безвоздужного нанесения, абразивоструйтые комплексы, самоходные подъемники, манипуляторы, погрузчики, строительные леса.
  • Технологии нанесения и технологии нанесения покрытий
    Компания реализует 8 технологий подготовки поверхности с использованием различных абразивов и химических соединений, а так же 8 технологий нанесения защитных покрытий различной степени защиты.
  • Работы без предварительного авансирования
    Компания имеет возможность начинать работы без авансирования, за счет собственных средств, благодаря сформированным оборотным фондам, и выдерживать операционные циклы до 3-х месяцев (на крупных проектах).
  • Компания имеет внушительный пакет лицензий и сертификатов по разным стандартам качества
    Компания и персонал компании аттестованы и функционируют по трем системам менеджмента качества:
    - ISO 14001:2015,
    - ISO 9001:2015,
    - OHSAS 18001:2007.
  • Гарантии качества
    При реализации проектов с утвержденными регламентами в соответствии со стандартами ISO, компания принимает на себя гарантийные обязательства на срок от 5 лет.